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Abstract Current trend of research on multithreading processors is toward the chip
multithreading (CMT), which exploits thread level parallelism (TLP) and improves
performance of softwares built on traditional threading components, e.g., Pthread.
There exist commercially available processors that support simultaneous multithread-
ing (SMT) on multicore processors. But they are basically based on the conventional
sequential execution model, and execute multiple threads in parallel under the control
of OS that handles interruptions. Moreover, there exist few languages or program-
ming techniques to utilize the multicore processors effectively.

We are taking another approach to develop a multithreading processor, which is
dedicated to TLP. Our processor, named Fuce, is based on the continuation-based
multithreading. A thread is defined as a block of sequentially ordered instructions
which are executed without interruption. Every thread execution is triggered only by
the event called continuation.

This paper first introduces the continuation-based multithread execution model
and its processor architecture then gives multithreaded programming techniques and
the continuation-based multithreading language system CML. Last, the performance
of the Fuce processor is evaluated by means of the clock-level software simulation.
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1 Introduction

The requirement for utilizing information and communication facilities on the In-
ternet such as the grid computing and ubiquitous computing environment has been
highly increasing these days. In order to construct the required infrastructure for this
requirement, it is indispensable to develop parallel/distributed computing techniques.
The current trend of research on such processors is toward the chip multithreading
(CMT) [1, 2], which aims to exploit thread level parallelism (TLP) and to improve
performance of softwares built on traditional threading components, e.g., Pthread.
CMT is principally realized by a straightforward extension of conventional symmet-
ric multiprocessor (SMP) techniques. Therefore, even though the advances of semi-
conductor technologies enable the CMT, SMP-based CMT processors would have
the limits to scalable multithread processing if they are built only on the traditional
sequential-computation-based framework.

These computer architectures and softwares depend on von Neumann principle.
Now is the time to reconsider parallel/distributed processing from the fundamental
principles, and to develop a completely new architecture.

We are taking another approach to develop the new architecture called Fuce [3, 4]
and its softwares based on a new principle: noninterruptible thread that runs through
its code without being interrupted by others, and continuation that rules execution
ordering and synchronization among multiple threads.

Our processor, named Fuce, is designed based on the continuation-based multi-
threading. Fuce is evolved from dataflow architectures (e.g. [5-8]) to make it more
practical. A thread is defined as a block of instructions that are sequentially executed
without being interrupted. Every execution of thread is triggered by events called
continuation [8]. Executions among threads are partially ordered, and their order
is specified by continuation, that is, the continuation-based multithreaded program.
Fuce is another type of CMT processor that executes those multithreaded programs.
It aims to fuse the intraprocessor computation and interprocessor communication.
Internal computations and external communications are handled uniformly by the
continuation-based event-driven multithreading.

This paper presents the continuation-based multithread execution model and Fuce
processor architecture. Then the paper outlines multithreaded programming tech-
niques in Fuce. Lastly, performance of the Fuce processor is evaluated with the
clock-level software simulator developed in parallel to the hardware implementation
on FPGA.

2 Background and aim of research

Two.approaches.are considered.on. the approach to multithreading. One is fine-grain
multithreading evolved from the framework of dataflow architecture, and the other
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is coarse-grain multithreading in the framework of conventional sequential proces-
sors. The dataflow-based approach aims to improve the fine-grained dataflow paral-
lelism toward coarser-gained, so-called macro-dataflow, that augments dataflow with
control-flow, and has evolved into multithreading. This approach was active in the
1980s and 1990s [5-8]. Unfortunately, this approach seems to have declined. There
are several reasons for this: (1) Although a dataflow-based scheme has the potential to
maximally exploit parallelism, it is inefficient for sequential programs on which tra-
ditional software is built. (2) Data-driven mechanisms are expensive to implement in
hardware. (3) It is difficult to extract spatial and temporal locality in dataflow-based
computation. (4) The dataflow-based architecture offers a poor recipe for developing
a practical language system like the C language, and Operating System, e.g., multi-
tasking, memory management, I/O handling, and so on.

For these reasons, the main stream of research on the parallel and distributed
processing is on the basis of sequential-processing-based commodity machines, e.g.,
cluster machines and grid computing. In this stream, there are two approaches to mul-
tithreading: simultaneous multithreading (SMT) and chip multithreading (CMT). The
SMT approach combines multithreading with superscalar techniques. Instructions are
simultaneously issued from multiple threads. Therefore, SMT utilizes ILP techniques
in order to exploit parallelism in instruction level, and enhances the sequential-based
processors [9]. Recently, advanced versions of commodity processors have been com-
mercialized [10, 11]. However, the problem of these SMT approach is that it is lim-
ited in exploiting parallelism even if it uses ILP because it is built on the sequential-
computation-based model.

The CMT approach aims at a simpler and more effective realization of thread-level
parallelism on a chip multiprocessor (CMP) [12]. The idea of this approach is very
simple, in principle, in that it integrates the symmetric multiprocessor (SMP) into a
CMP. CMT processors have been commercialized already [1, 2, 11]. But the CMT
processors have the same problem as the SMT processors.

In contrast, our research on Fuce architecture aims to develop a scalable mul-
tithreading processor, revisiting dataflow-based computation model in spite of its
decline. The new idea in this research is the continuation-based event-driven com-
putation. Thread execution is triggered by continuation signals sent by other threads
either external or internal, and executions among multiple threads are controlled by
continuation events.

The objective of our research is to solve the problems in dataflow-based architec-
ture mentioned above. For this purpose, we are taking a comprehensive approach to
continuation-based event-driven multithreading, from the programming model, lan-
guage system, operating system to the processor hardware implementation.

For instance, we are now developing the continuation-based multithreading lan-
guage CML and an OS kernel which is built through the multithreaded programming.
The Fuce processor hardware is designed to support the OS kernel mechanism.
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3 Fuce execution model and processor architecture
3.1 Continuation-based multithread execution

The core concept of the Fuce thread execution model is the event-driven computa-
tion [8]. Every thread receives continuation signals from other threads and its exe-
cution is triggered on the receipt of all corresponding continuation’s. The thread is
defined as a sequentially ordered block of more than one machine instruction exe-
cuted exclusively without being interrupted. Note that this thread definition differs
from the typical definition of nonblocking thread [13—15] or the definition of block
in TRIPS [16].

The main goal of the Fuce processor is to fuse inner-computation and external
communication by the notion of continuation-based multithreading. Not only user-
level programs but also even OS kernel programs including external I/O-event han-
dling codes are composed of sets of noninterruptible threads.

The Fuce program is written as a set of functions. Each function is programmed
using threads, and the corresponding function instances are executed in its runtime
environment. Information of function instances is stored in a specially devised high
speed-memory called Activation Control Memory (ACM). Figure 1 depicts the struc-
ture of ACM. Its structure is similar to the paging system used in virtual memory in
typical operating systems. Each page in ACM is associated with a function instance,
and information of all the threads involved in the function is recorded in the ACM
page.

The information for controlling thread execution: sync-count, fan-in, code-entry
and lock-bit, are stored in ACM. Sync-count is the number of continuations a thread is
currently waiting for. Initially, the sync-count is set to the fan-in value of the thread.
Code-entry is a pointer to the entry address of the thread code. Each thread ID is
given according to the recording order of threads in a page. Every thread is efficiently
identified by its page number and page displacement in ACM. The lock-bit is used as
a semaphore. The initial value of lock-bit is zero. The base-address is a pointer to the
entry address of data area used by the function instance.

Fig. 1 The structure of ACM .
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3.2 Fuce processor

Figure 2 depicts an overview of the Fuce processor. In this processor, multiple thread
execution cores are implemented in a chip. The key components of Fuce to support
concurrent thread execution are the Thread Activation Controller (TAC), multiple
Thread Execution Units (TEUs) and multiple register files.

3.2.1 Thread activation controller

Thread Activation Controller (TAC) controls all thread firings and mutual exclusions
using ACM.

ACM is implemented in TAC as a high-speed memory using the same technology
as cache memory. TAC handles the thread-control-related instructions such as cont
and newins which are issued in the TEUs, and updates the states of ACM. A queue
called ready-queue is implemented inside the TAC. TAC enqueues ready threads to
the ready-queue. When one of TEUs finishes a thread execution, TAC allocates a new
thread in the ready-queue to the free TEU.

In addition, the special high-speed memory called Bridge Registers (BR) is imple-
mented inside TAC. BR is devised as the temporal data buffer used in the data passing
between threads. As the data passing between threads occurs frequently in Fuce, it
is desirable to make it as efficient as possible. BR has the similar paging structure to
ACM, but its size is small enough.

. . Register File
Thread Execution Unit
I-Cache 0:|_‘
0 1
__I_li ] |
2 3 |
C | 3 |
= - 4 1 | I
N ! 5 14
| ] 15
; 7
N | Register
S | I-Cache IPreload Unit file
L | Main Unit

N
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Load/Store Unit
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Ready Queue Y—
N\

Thread Activation Controller

Main memory

Fig. 2 The Fuce processor architecture
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Table 1 Instruction set for Fuce

Thread instructions Meaning

cont rs continue to thread held in register rs

recont rs reset and continue to thread held in rs

delda rs release data-area held in rs

delins rs release ACM entry held in rs

end terminate thread

newda rd, rs get data-area of size held in rs and set to rd
newins rd, rs get new ACM entry and set its page number to rd,

then set to the entry the pointer to data-area held in rs
plend end of preloading
setacm rs, rt, imm set code address imm and fan-in value shown

by rs to ACM entry shown by rt

3.2.2 Thread execution unit

Thread Execution Unit (TEU) executes instructions of thread. In the current imple-
mentation, the Fuce processor are equipped with eight TEUs to support concurrent
execution of multiple threads. TEU consists of a Main unit (MU) and a Preloading
unit (PLU). MU is a very simple 32-bit RISC processor and its internal architecture
is quite similar to the MIPS processor. The instruction set of MU is also that of MIPS
extended with thread-related instructions shown in Table 1. PLU is also a small RISC
core, and it supports only load instructions. Note that the data-cache memory is not
implemented because we consider there might not exist simple mechanisms to exploit
data locality in the event-driven concurrent programs.

PLU and MU work with each other in pipeline fashion through a register file.
PLU executes the fore-part of a thread, and MU executes the rest of the thread. Here,
we assume that all load instructions are arranged into the fore-part of thread by the
compiler or programmer.

4 Continuation-based multithread programming

4.1 Basic programming techniques

4.1.1 Data passing between threads

When a thread A sends a continuation signal to a thread B, we say that A contin-
ues B. Continuation to another thread and recontinuation to the same thread is per-
formed with instructions cont and rcont, respectively. These instructions are not
concerned with the data passing between threads, but just send a continuation sig-
nal. The data passing between threads.is.done through memory with store and load

instructions before sending continuations.
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Fig. 3 Data passing between
threads

Fig. 4 Function invocation with
continuations
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Figure 3 illustrates the data passing between threads. Threadl and thread2 con-
tinue thread3, after they store the values thread3 requires. When thread3 is fired, it
first loads the values that thread1 and thread2 have stored.

4.1.2 Function invocation

Figure 4 shows how functions are invoked using thread continuations. Function invo-
cation is programmed in a split-phase manner. To invoke a function, a data area of the
function has to be allocated in memory. The data area consists of the parameters of

ol Lalal Z'yl_ilsl

ID of succeeding threads to be continued
a function, the caller of the function does
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not get blocked but continues its execution. A typical process of function invocation
and return from the callee function is the following.

Invocation process: The caller thread of the caller function (1) acquires a new
data area and a new ACM page for the callee function with macro instructions newda
and newins, (2) registers all of the thread information, i.e., the set of fan-in’s and
code-addresses of the callee function into the newly acquired page with instruction
setacm, (3) stores parameter values to be passed to the callee into the parameter
slots in the newly acquired data area, (4) stores the ID of the thread to be contin-
ued into the return-thread slot, then (5) continues the head thread in the callee with
instruction cont.

Return process: The tail thread of the callee function (1) stores a return value
into the return-value slot in the data area of the caller function, and (2) continues the
succeeding thread of the caller function with instruction cont, then, (3) deletes the
data area and ACM page of the callee with instructions delda and delins.

4.1.3 Iteration

There are two ways to program the iteration. One way is to use conditional branch
instructions within a thread. However, this method might require a long time to com-
plete the execution of a single thread if the loop repeats many times in it. This is
undesirable for effective parallel execution of multiple threads in the Fuce processor.
Another way is to define a tail-recursive function for expressing iteration as shown in
Fig. 5.

The advantage is that whenever such a function is invoked, it is not necessary to
acquire a new ACM page and data area for the function, since the same ACM page
and data area can be reused, and eventually, the tail-recursive function is executed
as thread level iteration by the Fuce processor. Therefore, the execution of a tail-
recursive function is quite efficient in comparison with that of normal function. In
addition, by using this method, threads are frequently switched, and never occupy the
processor resources for a long time.

Fig. 5 Tieration by instances of tail recursive function
tail-recursion . A
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4.1.4 Mutual exclusion

Mutual exclusion is necessary for non-reentrant routines such as I/O-event handlers
and dynamic memory allocators in operating systems. In the Fuce processor, special
instructions are implemented to support mutual exclusion.

e [trylk rd, rs] setsoneto rd and sets the lock-bit of the target thread shown
by rs to one if its value is zero. Otherwise, sets zero to rd.
e [unlk rs] sets the lock-bit of the target thread held in rs to zero.

These instructions do not access to the main memory, but just modify the lock-bit
fields in ACM. This differs from conventional test-and-set operations such as LL
(load linked) and SC (store conditional) in MIPS architecture [17]. Conventional test-
and-set operations cause accesses to main memory, leading to a lot of pipeline stalls.
On the other hand, accesses to ACM will not cause so many pipeline stalls due to
a short access latency. Mutual exclusions implemented with this approach never use
main memory, and thus would be very efficient.

Figure 6 illustrates threads that are implemented with the instructions described
above. Suppose the fan-in value of thread0 is two. Threadl, thread2, and thread3 are
trying to store a value into a memory location x. Only one of them will be able to
continue threadO after the thread0 has continued itself by executing the instructions
rcont and unlk. Here, the instruction trylk is used to guard against a race con-
dition among the requesting threads.

instance j instance k instance 1
threadl thread2 thread3
tryli{ 19,[i+thread0] trylk r9,[i+thread0] trylk r9,[i+thread0]
beqz 19, FAIL beqz r9, FAIL beqz r9, FAIL
store 15, X store r5, X store r5, X
cont [i+thread0] cont [i+thread0] /cont [i+threadO]
FAIL: \\ FAIL: | FAIL:
~—"rcont [j+thread1] \*—— rcont [k+thread2] ~—"rcont [l+thread3]
| /
| ~
'
thread0 /_\
X
y load r3, x
z : self loop
rcont [i+thread0]
unlk [i+threadO]
\\’
Data Area instance i

Fig. 6 Mutual exclusion
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4.2 Programming techniques for parallelism

We introduce three typical but quite important programming techniques for Fuce
which control temporal and spatial parallelisms, respectively. We show the simplicity
of writing parallel programs using Fuce.

4.2.1 Data-parallel computation

Data parallel computation is programmed as parallel function invocation or explicit
parallel thread execution. In the parallel function invocation, activated function in-
stances compute each data element in parallel. This is called instance-level paral-
lelism. Another approach is to execute multiple threads in parallel for each data ele-
ment within an instance. This is called thread-level parallelism. Figure 7 depicts the
instance-level parallel computation of a fork-join program.

4.2.2 Thread pipelining

The continuation model of Fuce allows us to program the thread pipelining easily.
The thread pipelining provides temporal parallelism and it can be used typically for
stream processing described in Sect. 6.1.

To program the thread pipelining, we make use of the instructions cont and
rcont, or test&lock instructions for mutual exclusion. Figure 8 shows a version

1 thO :
... roy3-~—~—~————-
1
1| cont(th1) = | Eh1 |
1
i| - U i| cont(th2) — e [
!| --operate... ! .. ' cont(th3) '
! ...data... i 1| ...operate... || onerate !
1| end; ! : data. ! operate P !
! [ .--d | ..-dpt ...data... | '_Io_iﬁ_""'
__________ 1| end; ! -.data... cont(join_th)! | I
| ] . | Frﬁ
—————————— : end; end; ' | i
, 1 1
__________ I el
Fig. 7 Data parallel computation
" threadl (fan_in=3) thread2 (fan_in=3) thread3 (fan_in=3)
continue
to self load ... Za&/ load ... load ... /
. Y/ . : /
: &Y H L/ :
(XX} store 15, X / store 15, y / store 15, z eoeoe
cont [thread2] cont [thread3] cont [thread4]
L.l rcont [threadl] ~— rcont [thread2] 1.l rcont [thread3]
cont [thread(] cont [threadl] cont [thread2]
|' ’: // Y // !
\ \ P4
S -7 S e eeemmm= =T -
ack

Fig. 8 Thread pipelining
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of using only cont and rcont. The fan-in value of each thread is three. After con-
tinuing to itself, each thread is waiting for two continuation signals (¢rigger and ack)
from the neighbouring threads. The instruction rcont is used because the threads
for pipelining iterate at thread-level and have to be refired as many times as inputs
exist.

4.2.3 Parallelism control

How to manage parallelism is an important problem in parallel processing. In partic-
ular, dataflow-based computation exploits parallelism beyond the limit of hardware
resource. With the Fuce processor, parallelism can be constrained within the capacity
of hardware resource, e.g., the number of waiting threads in the ready-queue or the
number of active instances, by using the hardware register hd-load that displays the
hardware load.

As functions are invoked in split-phase manner, we can invoke multiple functions
at the same time. This parallel invocation provides spatial parallelism. However, when
we deal with problems which have potentially high parallelism, there will be an ex-
plosion of function instances, and finally we will fail to solve the problems because
of a depletion of hardware resource such as ACM.

With a little modification of function invocation, we can control the parallelism
of program. The number of functions to be invoked is easily controlled by using a
condition variable, as shown in Fig. 9. In the figure, hd-load displays the load of the
hardware resource and p is set to some threshold value of the hardware load. Then
the Fuce processor switches between parallel and serial invocations according to the
value of hd-load during the execution.

e
; p,s) [ cont th4
lj:l slt 15, 18, 19 if hd-load < p
; begz 15, L call £2
v |/ cont thS else
cont th3/th2 / L: continue to th2)
AN ) cont th2;
PN\ © S~ i th2

\4

if hd-load < p then

>.</———contﬂ15
= "
Parallel-invoke 5
th
else Serial-invoke I:I 1 3
¥ 1
hd-load: hardware load (p's) return

p: threshold of free-ins S~

\

(a) Concept (b) Thread code

Fig. 9 Parallelism control
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5 Fuce language system
5.1 Continuation-based multithreading language CML

Continuation-based Multithreading Language (CML) is designed for writing all kinds
of programs, even including OS kernel programs, based on the concept of continua-
tion. CML is basically a C language extended with several thread-related operations
described below.

Function and process definition: A function or process descriptor is
added to each normal function definition of C. A process differs from a function in
that it continues to itself tail-recursively without returning a value.

Data-Area (DA) variables: darea decorator is added to a local variable if it
is to be allocated to the main memory. Otherwise the local variable is allocated to a
register. Formal parameters of function are implicitly declared as DA variables.

Thread definition: The thread definition begins with thread decorator fol-
lowed by the normal function definition of C. Note that the body of a function de-
finition contains several explicit thread definitions plus an implicit thread definition
called entry thread whose body is written as the usual body for the normal function
of C.

Fan-in specifier for a thread: A thread definition can optionally have fan-in
number specifier like <2> just after the thread name. If the specifier is omitted, it
means that the fan-in number is 1 for the thread.

Thread transfer: The statement cont thread-name; (or => thread-name;) is
used to issue a continuation to the specified thread.

Function call: A function call in Fuce is done in a split-phase way. That is, the
called function is executed on a thread different from that for the caller. Thus, the
return value has to be assigned to a DA variable instead of a register. Also, at the
same time, the caller has to inform the called function of the name of the thread that
will receive the return value. For this, the following syntax is used.

DA variable = function-name(parameters) => thread-name ;

Self-recursive call: It should be efficient for a recursive function to reuse the
same function instance (local variables and the ACM page) when recursively calling
itself, even if the recursively called function has to run on a logically different thread.
For this, recur (parameters) isused. Actual parameters will be overwritten on
the formal parameter variables for the function. Also, recur [N] isused when a
process reinvokes itself with issuing N continuations (signals).

The final statement: The final statement of a thread body should be one of
return, a thread transfer statement, or a self-recursive call to the function.

A syntactic sugar for a channel: The following statements of Hoare’s CSP
like syntax are available for a channel variable. ch ?? v to get a value from chan-
nel ch and store it to v. ch !'! v to put a value of v to channel ch. Also, as in
proc (c: :ch<+>), achannel variable can be accompanied with an annotation <+>
or <-> to specify the channel is connected as an output or an input, respectively. In
this case, process proc becomes a sender to channel ch, and ch is passed to formal
parameter.c.

Figure 10 illustrates a CML program that computes a factorial number.
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5.2 Converting C programs to CML programs

Conventional C programs are converted to CML programs through the following
processes. We omit here the details of the converting process (see [18]) but show
the brief sketch.

1. Automatic thread extraction: For any block of statement in a C program, the
thread number is assigned to each component of a block, by using three variables:
the base thread number, the current thread number and the next new thread num-
ber. The converting process is performed in the order of the block in assignment
statement with/without function call, conditional statement, and iteration state-
ment.

2. Dependency analysis between threads: Then the dependency between extracted
threads is analyzed. Figure 11(right) shows the dependency graph of threads ex-
tracted from an example code fragment of C shown in Fig. 11(left). Here, solid
arrows represent references to DA variables, and dotted arrows represent function
value definitions.

3. Thread fusion: For any part of the dependency graph, threads are fused into a
single thread if there is no parent and child relation between the threads, but there
exits chains of variable reference relation between them.

4. Deciding fan-in number of a thread: The fan-in number of a thread in a pro-
gram is decided according to the following theorem for the dependency graph for
threads constructed from the program. (Its proof is omitted.)

Theorem 1 The fan-in number of a thread is equal to the sum of the number of
incoming dotted arrows.

Fig. 10 CML code for a function int fact (int n)
factorial function darea int m;

thread out_fact {
return n * m;

if (n > 0) {

int p = n-1;

m = fact(p) => out_fact;
} else {

return 1;

Fig. 11 Thread extraction and a

dependency graph ho

thl
2
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5.3 CML compiler

The Fuce instruction set except the thread-related instructions is based on the MIPS
system and the most part of the CML grammar borrows the grammar of C. Therefore,
it takes no much effort to implement the CML compiler, if CML programs can be
translated into complete C programs by modifying the code generation part of ex-
isting C compiler to fit in the Fuce execution model. A CML program is compiled
Fuce machine code through the intermediate code called HAL (High-level Assembly
Language). HAL has the same syntax as the C language.

Translation of CML into HAL

Thread-related instructions shown in Table 1 are translated by using inline-
assembling functions and macros. The outline of translation is as follows. DA vari-
ables declared in a CML function are defined as a global structure in C, and two fields
are added to the DA structure for the thread ID (ACM entry number) of the caller that
calls a function and the pointer to the DA variable that stores the return value. Then
the thread is redefined as the function of C. At that time, the thread number 1d rep-
resenting the self- thread and the pointer da to the structure that holds DA variables
are set up as the first and second arguments of the C function.

Figure 12 shows the HAL code obtained by applying the above translation to the
CML program of Fig. 10. Since HAL codes contain no function call, it is easy to
optimize the codes.

Modifying existing C compiler

In order to generate the Fuce machine code, we modify the code generation part
of the existing C compiler (gcc). As the Fuce execution model has no stack and even
no notion of register save/restore, we modify the portion where stack operations,
i.e., register save/restore, are performed in the code generation part of the existing C
compiler (gcc). In addition, we modify the register convention of compiler so as to
adapt it to Fuce. We assign the first argument (1d) of C function to register #1, and

typedef struct _fact darea { fact (int id, fact_darea da) {

int n; if (da->n > 0) {
int m; fact_darea *fl_da = newda (fact);
int return_thid; int f1 = newins(fact, f1 _da);
int sreturn_val; fl da->n = da->n - 1;
} xfact_darea f1 da->ret thid = 1;
fl_da->ret_val = &(da->m);
out fact (int id, cont (£1) ;
fact_darea da) ({ } else {
* (da->ret_val) = int ret id = da->ret thid;
da->n x da->m; * (da->ret_val) = 1;
cont (da->ret_thid) ; cont (ret_id) ;
delins (id) ; delins (id) ;
delda (da) ; delda (da) ;
end; }
} end;

Fig. 12 HAL code
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thread th(ST xp) { thread th(ST xp) {
int i; int i;

. int r = p->x;

i = p->x;

(a) Before PLO. (b) After PLO.

Fig. 13 Preloading optimization

the second argument (da) to register #3. This is because, in Fuce, a thread execution
begins with setting the thread ID in the register #1 and the address of data area in the
register #3.

Preloading optimization

The use of PLU is one of the most significant advantages of the Fuce processor.
The preloading operation for variables of a thread is done by one of PLUs while its
corresponding MU is executing the body of another thread, before the execution of
the thread body starts in the MU.

The preloading mechanism is very useful to hide memory access latency, and it
achieves two times speedup, in the ideal case, compared to those cases without pre-
loading.

In order to utilize the mechanism, we apply Preloading Optimization (PLO) to the
given thread code. The PLO code consists of fore-part and rest-part. The fore-part
includes only load instructions, whereas the rest-part has any instructions. We try to
move as many load instructions as possible to the fore-part. Figure 13 demonstrates a
typical example of code moves. For a code fragment p->x in the thread body, a new
variable r is introduced; the code r=p->x is added in the fore-part; and the original
code fragment is replaced with r. Note that r is mapped to a register but not the main
memory.

6 Examples of CML code
6.1 Stream programming

Among various styles of parallel/concurrent programs, stream processing programs
are particularly useful and suited for execution on Fuce. Stream processing is simply
written by using continuation.

Continuation method of stream programming

Consider a pair of processes (w, r) connected by a channel ch. The process w gen-
erates a series of values for x and sends them to the process r. This stream processing
can be written in CML as in Fig. 14. The action of w and r is controlled by cont in-
structions. Here we call init-, trigger-, or.ack-cont for each cont instruction according
to its usage.
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typedef struct { process W(chan xch) <2> {
int flag,value,to, from; /% computing x’'s value =/
proc to,from;} chan; ch->value = x;

cont ch->to;

process main () { recur;
darea chan ch; }
proc w = new W();
proc r = new R(); process R(chan xch) <2> {
ch.from = w; ch.to = r; x = ch->value;
w(ch<+>) ; cont ch->from;
r (ch<->) ; /% using x's value x/
cont w; recur;

Fig. 14 Continuation method

process main() { process ints(int i,
darea chan chil; chan *ch)<2>{
proc n = new ints(); if (i > 100)
proc s = new sieve(); { ch !! nil; exit; }
n(2,chl<+>); ch !'! i;
s (chl<->); recur (i::i+1);
1 1
process sieve (chan xch)<2>{ process filter (int e,chan =xcha,
darea chan ch2; chan *chb) <3> {
int a; int a;
if (ch ?= nil) exit; if (cha ?= nil) {
ch ??? a; chb !! nil;
if (a>10) exit;}
{prints(ch); exit;} cha ?? a;
printf (a); if (a % e == 0) {
proc £ = new filter(); recur [2] ; /* issues twice - - (1) */
proc s = new sieve(); } else {
f (a,ch<*>,ch2<+>) ; chb !'! a;
s (ch2<->) ; } recur;}}

Fig. 15 CML code for prime number generation

When w is invoked by an init-cont or an ack-cont issued by r, w puts a value of x
to ch, then issues a trigger-cont to r so that r can get the value. When r is triggered
by w, r gets the value of x from ch, then issues an ack-cont to w so that w can put the
next value. Note that the fan-in number for w(r) is two since it requires a recur-cont
plus a trigger-(ack-)cont.

Example: prime number generator

Figure 15 shows the CML code for generating prime numbers. prints (ch)
will display every number that is put in ch. An annotation <*> for a channel is
used to change the output channel to another for putting values. Thus, when the input
channel ch for sieve is passed onto an instance f of the filter process filter, its
inati i ieve to f£. This makes it possible to send data
ocess. Similar change will be done when
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Fig. 16 CML code for merge process main()

darea chan chl,ch2,ch3;
int p new producerl () ;
int g new producer2 () ;
int r new merge () ;

int s new consumer () ;
p(0,chl<+>);

g(l,ch2<+>);
r(chl<->,ch2<->, ch3<+>);
s (ch3<->) ;

cont p; cont g;

}

process merge (chan *cha,chan
x»chb, chan xchc) <3> {
darea int 1=0;

int u,v;
if (i==0) u = cha->upd;
else u = chb->upd;
if (1 != u)

cha->upd = 0;

cha ?? v; chc !! v;
} else

chb->upd = 0;

chb ?? v; chc !'! v;
recur (i::(i+1)%2);}

Fig. 17 Resource manager process resman(chan xreq,

proc man) <2>{
proc procid;
req ?? procid;
if (procid!=NULL) ({
/+ enqueue procid x/;

unlock (man) ;
recur;

}

process resuser (chan req,
proc man) {

proc p = new resuser_body ()
if (!lock(man)) recur;
reqg !! p;

filter process on the upper stream wants to connect itself to another filter on
the lower stream.

Note that two recur-conts are issued at (1) in the figure. When a%e is equal to
zero, no ack is issued by chb. to, since no data will be put to chb. To fake as if a
data is sent to chb. to, an ack-cont is issued.

Other examples

Other CML sample programs are shown in Figs. 16, 17, and 18.

Figure 16 shows a merge process. The merge process r gets the stream of even-
numbers (generated by producer p) or odd-numbers (generated by producer q) via
channel chp or channel chq selectively, and puts the merged stream to consumer
i and consumer definitions are omitted in
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Figure 17 shows a shared resource management program used as a monitor for
arbitrary number of processes. Lock/unlock operators are available in CML to realize
mutual exclusion. Note that the lock/unlock operations is basically equivalent to the
traditional test&set instruction, except for the lock/unlock operation is performed to
an ACM entry, that is, a thread. To each monitor an input channel is associated. When
any process requests to the monitor for accessing the shared resource, it issues a lock
instruction to the monitor process, and other competing processes requesting the same
monitor will busy-wait until its lock instruction completes.

6.2 Pipelining iterative codes

The stream programming in CML can be applied to pipelining a nested loops such as
the following:
for (1 = 0; 1 < M; 1i++)
for (J = 0; Jj < N; J++)
V[i] += A[i][3] * U[]];

Its pipelining CML code is shown in Fig. 18. When the process pipeline is
invoked at the first time, it creates and invokes a new process task for j = 0; sets
up channel out linking the two processes; and recurs to itself. In each recursion
of pipeline, it puts the current value of i to out and increments i by one.

Task process for each value of j (0 < j < N — 1) performs the following.

1. It gets i and sigma from the channel in.

2. When it is invoked at the first time, it creates and invokes another task for j+1,
then sets up channel out linking the two task processes.

3. In each recursion of task, if j <N,
it puts the value sigma+A[1i] [J]*U[J] to out, and issues a trigger-cont to the
succeeding task whose ID is out . to and issues an ack-cont to the preceding
task whose ID is obtained from out->from, then recurs to itself.

struct chan {int flag, process task(chan xin, int j,

}

Fig. 18 A pipeline code in CML

val, vall; int VI[],int UI[],
proc to, from;} int A[I[]) <3> {
darea chan out;
process pipeline(int i, int j, int 1 = in->val;
int VI[],int UI], int sigma = in->vall;
int A[]I[]) <2> { if (lout.to) {
darea chan out; proc p = new task();
if (lout.to) { out.to=p; out.from=1id;
proc p = new task(); p(out, j+1, VvV, U, A);
out.to = p;
out.from = id; if (3 < N) |
p(out, j, VvV, U, A); out.val = 1i;
out.vall = sigma +
if (i < M) { A[i1[3]1 = U[3];
out.val = 1i; cont out.to;
cont out.to; cont in->from;
++1; recur;
recur;
} V[i] = sigma;
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Otherwise, it writes the value sigma to V[i], then terminates. Here, only the
final task (j = N) performs this action.

A sequential computation for the original code would take O (M * N) time. On
the other hand, provided an ideal parallel execution environment, the pipelined code
would take just O (M 4+ N) time, that is O (N) time for completing the pipeline con-
struction and O (M) time for completing summation at task for j = N. Thus, sig-
nificant speedup can be achieved.

7 Evaluation of Fuce architecture

Performance of the Fuce processor is evaluated using the Fuce software simulator.
The software simulator executes the multithreaded programs written in CML and
simulates the behavior of Fuce hardware modules shown in Fig. 2 in clock cycle
level.

7.1 Execution time versus memory access latency

First, we measured the execution time of benchmark programs with the following
simulation parameters: Number of TEUs = 8, Memory Access Latency = 10 ~ 120
clock cycles, Preload: off, BR: off. Figure 19 shows the measured execution time
in clock cycles. As the figure shows, the execution clock cycles increase about 2-
fold~4-fold against a 12-fold increase in the memory access latency.

7.2 Effect of preloading

We measured the effect of preloading. Figure 20 shows the speedup achieved with
the use of PLU. The figure shows that the speedup of 1.2 to 2.0 times is obtained by
using PLU. Furthermore, the execution time of thread codes optimized for preloading
is compared to the execution time of the unoptimized program code that executes load
instructions on demand. Figure 21 shows the optimization is effective.

Fig. 19 Execution time of 1.6E+07
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L4E+07 —4&— FFT_pipeline
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1.2B+07 [ —x Qsort_pipeline
—8— Qsort_wellknown
1.0E+07  —©— Msort_wellknown

8.0E+06

6.0E+06

4.0E+06 [

2.0E+06 [

Execution time (clock cycles)

0.0E+00
0 20 40 60 80 100 120 140

Memory access latency
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Fig. 20 Effect of preloading
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Fig. 21 Comparison of execution time between preloading thread codes and conventional codes

7.3 Effect of bridge registers

We measured the effect of BR in the execution time. Figure 22 plots the speedup
achieved when BR are used in the inter-thread data passing. The figure shows that
the effect of BR is more explicit for larger memory latency. Figure 23 shows that the
execution time is less sensitive to BR access latency.

7.4 Performance sensitivity of ACM access latency

We measured the affect of ACM access latency on the execution time. Figure 24
depicts the relative performance on different ACM access latencies. The figure shows
that the execution time is less sensitive to ACM access latency.

7.5 Effect of parallelism control

ol described in Sect. 4.2.3. Figures 25 and
> value of hd-load is set to the number of
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Fig. 22 Speedup by bridge 3
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Fig. 23 Relative performance on different BR access latencies

waiting threads in the ready-queue. A similar pattern was observed when the value
of hd-load was set to the number of active instances. Figure 25 shows that more than
90% of performance is achieved even if the number of waiting threads in the ready-
queue is set to a small value, 16, for the 10-queen program. As Fig. 26 shows, the
performance hardly changes against the threshold value of 4-64 for the quick sort
program.

7.6 Speedup against the number of TEUs

We measured. the potential of the Fuce processor to exploit the parallelism of multi-
threaded programs. Figure 27 plots the speedup against the increase in the number of
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Fig. 24 Relative performance on different ACM access latencies
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Fig. 27 Speedup against the 9
number of TEUs —&— 10-queen
8 —=— Seive_pipeline —
—*— FFT_pipeline /

7 [ —>— FFT_wellknown_16
—a— Qsort_pipeline

= 6 —e— Qsort_wellknown
3 —=— Msort_pipeline
2 571 —A— Msort_wellknown
%)
4
Y
3
2
1
1 2 3 4 5 6 7 8
# of TEUs

Memory Access Latency = 20

—o— 10-queen

8 —=— Seive_pipeline
—*— FFT_pipeline
7 —>— FFT_wellknown_16
—a— Qsort_pipeline
—e— Qsort_wellknown
—=— Msort_pipeline
—=2— Msort_wellknown

Speedup
& 0 o

1 2 3 4 5 6 7 8

# of TEUs
Memory Access Latency = 100

7.7 Effect of pipelined iterations

We evaluate the effect of pipelining iterative codes described in Sect. 6.2. Figure 28
shows the speedup between the time taken for the serial code (the nested loop shown
in Sect. 6.2) and the time for the pipelined code (shown in Fig. 18) against the num-
ber of TEUs. Here, we used two kinds of pipelined programs: pipeln is exactly
the same version as in Fig. 18 and pipeln?2 is a larger-grained thread version, in
which each task process contains two multiply expressions for calculating two ar-
ray elements. Both are optimized for the preloading. Experiments were made with
simulation parameters: preload=ON, no. of TEUs=1-8.

We can see that the pipelined programs in CML exploit the pipeline parallelism
con51derably Especially, the program pipeln2 achieves mostly ideal speedup (of

e 3 at the preloading works more effectively on
1 on that of smaller ones.
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Fig. 28 Performance of pipelining iterations

These benchmarks, though small, give evidence that pipeline parallelism is ex-
tracted by stream programming and the Fuce execution mechanism can exploit
pipeline parallelism from sequential nested-loop codes.

8 Conclusion

This paper has described a language CML, its compiler, and a concurrent program-
ming technique for an innovative architecture Fuce which is based on noninterrupt-
ible threads. Perpetual processes are realized by recursive threads, process commu-
nication by a data structure called channel. The lock/unlock instructions in Fuce is
as powerful as test&set and used for realizing mutual exclusion of shared resources.
A cont instruction, lock/unlock instructions, and channels make it possible to write
various ways of stream processing programs. Also, a resource management program
necessary in an OS implementation can be written in the similar manner by imple-
menting a waiting-queue for multiple processes.

From the viewpoint of description level, CML programs seem rather in lower level.
However, CML has an enough capability for writing data synchronization and offers a
high level of abstraction functions for writing stream processing programs. Moreover,
mutual exclusion and synchronization can be written much more easily compared to
other multithread oriented languages such as Java. From the viewpoint of program-
ming paradigm, the simple style of programs based on noninterruptible threads and
continuation is quite innovative. Though a good programming discipline would re-
quire some time of practicing with the new language CML, the gain obtained would
be enormous. Finally, it is quite challenging to apply this paradigm to implementing
all levels of programs ranging from an OS to applications.

@ Springer



252 S. Amamiya et al.

References

1. Kongetira P, Aingaran K, Olukotun K (2005) Niagara: A 32-way multithreaded sparc processor. IEEE
Micro 25:21-29
2. Gochman S, Mendelson A, Naveh A, Rotem E (2006) Introduction to Intel core duo processor archi-
tecture. Intel Technol J 10:89-97
3. Amamiya S, Izumi M, Matsuzaki T, Amamiya M (2006) The fuce processor: The execution model
and the programming methodology. In: The 2006 intl conf on parallel and distributed processing
techniques and applications, 2006, pp 485-491
4. Amamiya S, Izumi M, Matsuzaki T, Hasegawa R, Amamiya M (2007) Fuce: The continuation-based
multithreading processor. In: Proceedings of the 4th international conference on computing frontiers
2007, pp 213-224
5. Sakai S, Yamaguchi Y, Hiraki K, Kodama Y, Yuba T (1989) An architecture of a dataflow single
chip processor. In: ISCA ’89: proceedings of the 16th annual international symposium on computer
architecture. ACM Press, New York, pp 46-53
6. Nikhil RS, Papadopoulos GM (1992) Arvind: *T: a multithreaded massively parallel architecture.
SIGARCH Comput Arch News 20:156-167
7. Hum HHJ, Maquelin O, Theobald KB, Tian X, Tang X, Gao GR, Cupryk P, Elmasri N, Hendren LJ,
Jimenez A, Krishnan S, Marquez A, Merali S, Nemawarkar SS, Panangaden P, Xue X, Zhu Y (1995)
A design study of the earth multiprocessor. In: PACT ’95: Proceedings of the IFIP WG10.3 work-
ing conference on parallel architectures and compilation techniques, Manchester, UK, IFIP Working
Group on Algol, 1995, pp 59-68
8. Kawano T, Kusakabe S, Taniguchi R, Amamiya M (1995) Fine-grain multi-thread processor architec-
ture for massively parallel processing. IEEE Press, New York, pp 308-317
9. Lo JL, Eggers SJ, Emer JS, Levy HM, Stamm RL, Tullsen DM (1997) Converting thread-level par-
allelism to instruction-level parallelism via simultaneous multithreading. ACM Trans Comput Syst
15:322-354
10. Marr DT, Binns F, Hill DL, Hinton G, Koufaty DA, Miller JA, Upton M (2002) Hyper-threading
technology architecture and microarchitecture: a hypertext history. Intel Technol J 6:1 (online journal)
11. KallaR, Sinharoy B, Tendler JM (2004) Ibm power5 chip: A dual-core multithreaded processor. IEEE
Micro 24:40-47
12. Sigmund U (1996) U.T.: Evaluating a multithreaded superscalar microprocessor versus a multiproces-
sor chip. In: Proceedings of the 4th PASA workshop on parallel systems and algorithms, 1996, pp
147-159
13. Roh L, Najjar WA (1995) Analysis of communications and overhead reduction in multithreading exe-
cution. In: Proceedings of the 1995 international conference on parallel architectures and compilation
techniques, 1995
14. Kavi KM, Youn HY, Hurson AR (1997) PL/PS: A non-blocking multithreaded architecture with de-
coupled memory and pipelines. In: Proceedings of the fifth international conference on advanced
computing (ADCOMP *97), Madras, India 1997
15. Ungerer T, Robi& B, Silc J (2003) A survey of processors with explicit multithreading. ACM Comput
Surv 35:29-63
16. Sankaralingam K, Nagarajan R, Liu H, Kim C, Huh J, Burger D, Keckler SW, Moore CR (2008)
Exploiting ILP, TLP, and DLP with the polymorphous TRIPS architecture. In: Proceedings of the
30th annual international symposium on computer architecture, 2003, pp 422-433
17. MIPS Technologies, MIPS32 architecture for programmers, vol II: The MIPS32 Instruction Set
18. Amamiya S, Hasegawa R, Fujita H, Amamiya M (2007) A language design for non-interruptible mul-
tithreading environment fuce. In: ISC award winning paper, international supercomputer conference,
Proceedings of ISC2007, 2007

@ Springer



Copyright of Journal of Supercomputing is the property of Springer Science & Business Media
B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without
the copyright holder's express written permission. However, users may print, download, or email
articles for individual use.



